4 research outputs found

    Design of feedback control strategies in a plant-wide wastewater treatment plant for simultaneous evaluation of economics, energy usage, and removal of nutrients

    Get PDF
    Simultaneous removal of nitrogen and phosphorous is a recommended practice while treating wastewater. In the present study, control strategies based on proportional-integral (PI), model predictive control (MPC), and fuzzy logic are developed and implemented on a plant-wide wastewater treatment plant. Four combinations of control frameworks are developed in order to reduce the operational cost and improve the effluent quality. As a working platform, a Benchmark simulation model (BSM2-P) is used. A default control framework with PI controllers is used to control nitrate and dissolved oxygen (DO) by manipulating the internal recycle and oxygen mass trans-fer coefficient (KLa). Hierarchical control topology is proposed in which a lower-level control framework with PI controllers is implemented to DO in the sixth reactor by regulating the KLa of the fifth, sixth, and seventh reactors, and fuzzy and MPC are used at the supervisory level. This supervisory level considers the ammonia in the last aerobic reactor as a feedback signal to alter the DO set-points. PI-fuzzy showed improved effluent quality by 21.1%, total phosphorus removal rate by 33.3% with an increase of operational cost, and a slight increase in the production rates of greenhouse gases. In all the control design frameworks, a trade-off is observed between operational cost and effluent quality

    Model-based analysis of the effect of temperature in biological wastewater treatment plants for simultaneous removal of organic matter, nitrogen, and phosphorous

    No full text
    448-458The effect of temperature on the phosphorous, nitrogen, and organic matter removal in an activated sludge system(ASS) has been assessed in this research. Benchmark Simulation Model No.1 (BSM1-P) with an ASS (ASM3bioP) is used and the temperature is chosen between 10 to 35°C. The kinetic expressions for the maximum growth rate of heterotrophic biomass, autotrophic, and phosphate accumulating organisms and their decay rates are considered. Total ammonia, nitrogen, and phosphorous in the effluent are analysed and when the range of temperature is less than 15°C and greater than 30°C, the effluent quality deviates from the legal requirements
    corecore